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Abstract. The paper aims at designing a novel scheme for sensory data fusion by a mobile robot
for reconstructing its 3-D world from their multiple gray images. Extended Kalman filter has been
employed for determining the coordinates of the 3-D vertices and equation of the planes of the
obstacles in the robot’s workspace from their multiple images. The geometric relations among these
3-D planes are then determined by using a logic program for recognizing the obstacles. The time
required for recognition of a typical planer obstacle such as a box on a Pentium-III client with 64
MB RAM and a Pioneer-2 type robot server including the time involvement for the motion of the
robot around the obstacle is approximately 18 seconds.
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1. Introduction

A mobile robot constructs its world map by sensing and processing information
about the objects around it for subsequent use in the navigational planning stage
[15]. A robot can execute the navigational planning task more efficiently with the
foreknowledge about its 2-D and 3-D world. In a 2-D map-building problem, ul-
trasonic or laser range finders are usually employed to determine the location and
boundary of obstacles in the robot’s world map. There exist a number of literatures
on the two-dimensional Map building [2, 8, 14]. Some of these prefer metric based
approach, while the rest employs strategies to identify landmark first and then use
local search strategy to explore the unvisited obstacles. Construction of a 3-D world
map, however, needs to keep a track of the obstacle surfaces and their heights as
well. Two or more cameras mounted on a pan-tilt platform are usually employed
to determine the third dimension of obstacles. Such a system with the capability
of determining “depth information” from multiple images is called stereo vision
[16] system. A low cost mobile robot having a single camera mounted on a pan-tilt
platform can also be used for stereo vision if 2 or more successive frames taken at
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different camera orientations are used for finding the depth information. The paper
aims at developing an experimental scheme for recognizing planer objects around
a mobile robot by fusing multi-sensory image data using extended Kalman filtering
[10].

A Kalman filter is a recursive digital filter [6] that evaluates estimator(s) from
a number of successive measurements supplied to the filter in sequence until the
error in the process of estimation, described by a covariance matrix, comes within a
prescribed limit. One significant advantage of Kalman filter over least square curve
fitting lies in its recursive formulation that supports submission of input data points
in time sequence. The Kalman filter can be used to construct 2-D lines from noisy
2-D image points, affine 3-D points from 2-D image points, affine 3-D lines from
noisy 2-D image points or from affine 2-D lines or from 3-D points, and 3-D planes
either from 3-D points or 3-D lines. Ayache employed Kalman filter [3, 4] for the
3-D reconstruction of images.

In this paper a novel experimental scheme for recognizing planer objects from
their multiple images will be presented. The object, if any in a scene, should first
be segmented from its background and localized for subsequent image processing.
Next, the Laplacian operator will be employed at the localized region on the origi-
nal image to find the 2-D edges. The 2-D vertices on the common edges will then be
traced. The 3-D vertices corresponding to the 2-D vertices will be determined next
from multiple images by using Extended Kalman Filtering (EKF). The expressions
for 3-D planes then can be determined from multiple 3-D points lying on the planes.
Finally, a logic program will be employed to determine relationship among the
bounding planes of an obstacle for its recognition.

The paper has been classified into the following 6 sections. A brief outline of the
EKF is presented in Section 2. The relationship of the perspective projection matrix
with camera parameters such as pan, tilt and skew angles [9] will be discussed in
Section 3. The representation of 3-D points and 3-D planes in a minimal form
and determination of the filter parameters for the reconstruction of 3-D points and
3-D planes will be presented in Section 4. The experimental details including the
setup and results will be presented in Section 5. The conclusions will be listed in
Section 6.

2. Recursive Extended Kalman Filter

An extended Kalman filter is a digital filter that attempts to minimize the effect of
measurement noise on the estimation process of a given set of parameters, related
linearly with the set of measurement variables. The recursive extended Kalman
filter is a recursive formulation of the filter algorithm so that the parameters to be
estimated called estimators can be evaluated from the measurement inputs supplied
to the filter in succession. An estimation error covariance matrix is used to monitor
the accuracy in the estimation process at successive iterations of the algorithm. The
algorithm is terminated when the elements of the error covariance matrix come
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within a prescribed limit. The most important characteristic of this filter lies in its
recursive formulation that provides a user the freedom to control the accuracy of
estimation to a desired level at the cost of new measurement inputs.

Let

• xi be a measurement vector of dimension (mi × 1),
• Ki be the filter gain matrix of dimension (n× pi),
• ai be the estimator vector of dimension (n× 1),
• Mi be a system matrix of dimension (pi × n) such that

Mi = ∂fi
∂a
, (1)

where fi(xi , a) = 0, be a set of equations describing relationships among a para-
meter vector a and the measurement variable vector xi ,

yi = −fi
(
x∗
i , ai−1

)+
[
∂fi

∂a

]
(x∗
i ,ai−1)

(
a − a∗

i−1

)
is a modified measurement vector of dimension (pi × 1), obtained by linearization
of fi(xi , a) = 0 around xi = xi−1 and ai = a∗

i using Taylor series.

wi = E
[
wiw

T
i

] =
[
∂fi

∂x

]
(x∗
i ,ai−1)

�i

[[
∂fi

∂x

]
(x∗
i ,ai−1)
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, (2)

where wi = (∂fi/∂x)(xi − x∗
i ) is the measurement noise vector of dimension

(pi × 1) and �i is a positive symmetric matrix.

Si = E
[
(ai − ai∗)(ai − a∗

i )
T]

is the error covariance matrix of the estimator a.

Figure 1. Schematic diagram of a recursive Kalman filter.
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The recursive formulation of an EKF includes the following three steps.

Ki = Si−1MT
i

(
Wi + MiSi−1MT

i

)−1
, (3)

a∗
i = a∗

i−1 + Ki
(
yi − Mia∗

i−1

)
, (4)

Si = (I − KiMi

)
Si−1. (5)

The algorithm is initialized with a large S0. The values of yi ,Mi ,Wi are computed
following their above definitions. a0 is initialized as a null vector. The algorithm
then continues iterating in sequence until Si comes below a predefined threshold.
The resulting ai after termination of the algorithm is the desired estimator. The
schematic diagram depicting the use of EKF in estimating noise-free geometric
parameters from noisy 2-D images is presented in Figure 1.

3. The Perspective Projection Geometry

The back plane of a pinhole camera where the image of an object is formed is
called the image plane. From the principle of perspective projection it can be easily
shown that the relationship between a bright spot formed at (u, v) on the image
plane corresponding to an object point (x, y, z) (vide Figure 2) is given by

(
ku

kv

k

)
=

 1 0 0 0

0 1 0 0
0 0 − 1

f
0





x

y

z

1


 . (6)

In expression (6), k is a scalar constant given by k = −z/f , and f is the focal
length of the camera. In the above system the coordinates (u, v) and (x, y, z) are
referred to with respect to the image plane axes X1 and Y1 and the z-axis Zc per-
pendicular to the plane. If the origin of that system is shifted to the optical center
of the camera, then the transformation can be represented by

Figure 2. Generalized camera model of 3-D projection.
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(a)

(b)
Figure 3. (a) Pan angle of the camera with the reference coordinate system. (b) Tilt angle of
the camera with the reference coordinate system.
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Further, taking into consideration of the orientation of the camera described by
the pan angle A, the tilt angle B shown in Figures 3(a) and (b) respectively and
the skew angle C represents the orientation of the image plane centric system
with respect to the camera coordinate systems. The above transformation takes
the following form:

[
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k

]
= T ·



x

y

z

1


 , (8)

where T is the perspective projection matrix given by
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T =
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 . (9)

In the subsequent part of our discussion we will use the above expression for the
computation of the perspective projection matrix T .

4. 3-D Reconstruction

In this section we briefly outline the scheme for minimal representation [3] of 3-D
points and 3-D planes and also demonstrate how EKF can be employed here for
the reconstruction of the 3-D points from multiple 2-D points and the 3-D planes
from multiple 3-D points on the plane. Let us first discuss briefly the possible
representation of 2-D lines, 3-D lines, 3-D planes.

A 2-D line AB can be minimally best represented by two parameters a and p as
evident from Figure 4. The advantage of this parameterization is that the equation
of the lines are linear in the parameters (a, p), which is essential in formulation
of recursive Kalman filtering equation. Secondly the state vector which is derived
from these parameters satisfy the inequality check criteria of the recursive Kalman
filter. Similarly, the 3-D line CD can be minimally represented by four parameters
a, b, p, q, as shown in Figure 5 and the plane EFGH can be represented by three
parameters a, b, p as shown in Figure 6.

The parameters mentioned above help in representing the affine lines and planes
in a minimum, complete and unambiguous manner, which can be used in subse-
quent estimation. Further, it is to be noted that the representation also satisfy the
differentiability criteria to allow linearization of the measurement equation in the
formulation of recursive Kalman filter, discussed earlier.

4.1. RECONSTRUCTION OF 3-D POINTS

Given the measured coordinates of the 2-D point (ui, vi) in several images, we can
evaluate following Ayache’s principle [3], the corresponding 3-D point using EKF.
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Figure 4. 2-D line AB that passes through (0,−p) and normal to the line, passing through
(0, 0) and (a, 1) can be represented by two parameter a and p.

Figure 5. A 3-D affine line CD that passes through the (X,Y )-plane at a point (p, q, 0) and
having the direction vector (a, b, 1)T, can be represented by four parameters a, b, p, q.

Here Mi is a 2 × 3 matrix, yi is a 2-dimensioanl vector, and tij denotes the ith
row and j th column element of the perspective matrix T (denoted by Equation (9))
and ti is the first three element of ith row of the same matrix T. (ui, vi) is the 2-D
image points of the vertex.

The measurement error matrix wi is a 2×2 matrix estimated from the following
expression
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Figure 6. A 3-D affine plane EFGH that passes through (0, 0,−p) and normal to the plane
passing through (0, 0, 0) and (a, b, 1) can be represented by three parameters a, b, p.

∂f

∂xi
=
(−t3ai−1 − t34 0

0 −t3ai−1 − t34

)
. (10)

Further, the estimator vector a in the present context is the 3-D point [x, y, z]T with
a initial value of [0, 0, 0]T; S0 which is of 3×3 size in this case is initialized with a
large value. Examples for the construction of 3-D points will be presented in detail
in Section 5.

4.2. RECONSTRUCTION OF 3-D PLANE

For the reconstruction of the 3-D plane [3, 4], the filter has been employed with
a different set of measurement and estimation vector. These vectors can be repre-
sented as follows:

a = estimation vector of the plane = [a, b, p],
where a, b, p have the usual meaning from Figure 6, for the case when the plane is
not parallel to Z-axis. The measurement vector (xi) is the 3-D points (x, y, z). We
can choose the measurement equation as

fi(x, a) = axi + byi + zi + p = 0. (11)
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After linearization the following expression can be derived for estimation,

yi = −zi, (12)

Mi = [xi yi 1], (13)
∂f

∂x
= [ai−1 bi−1 1]. (14)

An example of reconstruction of 3-D planes from multiple 3-D points on the plane
will be presented in Section 5.

5. Experimental Setup and Simulation

5.1. THE EXPERIMENTAL SETUP

The experiments were carried out on a Pioneer 2 mobile robot (Figure 7) man-
ufactured by the ActivMedia Robotics company, USA. The system comprises of
one tabletop client and a mobile robot acting as the server. The robot serves the
client with its control programs for image grabbing, camera pan–tilt angle control
and motion in prescribed directions. The client generates the command for the
necessary tasks, and transmits them to the server agent (robot) through a radio
communication link. The robot grabs images at prescribed camera position and
transmits the TCP/IP packet of video bit streams for the tabletop client for sub-
sequent image processing. The robot also makes its server aware of its current
camera pinhole position as determined by it from the reading of its encoder disc
connected with the wheels. It may be added here that the encoder disc provides
the speed information, which is integrated by the agent to determine the camera
pinhole position.

The robot in our experiment was commanded to move on a prescribed path (vide
Figure 8) to take snaps of a wooden block (set 1 to set 4 images) at different camera
orientations for the purpose of 3-D reconstruction.

5.2. OBJECT RECOGNITION BY EKF

An outline of the major steps involved in object recognition by EKF is presented
below.

THE ALGORITHM FOR OBJECT RECOGNITION.

1. Take a new image at a given camera orientation with a predefined pinhole
position.

2. Segment and localize the object of interest (for example, the wooden block in
Figure 8) on the image.

3. Corresponding to the localized region on the original image find edges of the
object by using Laplacian operator.
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Figure 7. Photograph of the experimental Pioneer 2 mobile robot.

Figure 8. The trajectory of camera movement by a robot R around the block A to grab its
image from 24 different locations, denoted by triangles. Grabbed images at few locations are
shown.
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Figure 8. (Continued.)
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Figure 8. (Continued.)
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Figure 8. (Continued.)
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Figure 8. (Continued.)
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4. Find the 2-D vertices on the image by identifying a change in geometric slope
of the pixels lying on the edges. If the change is significant of the order of 30
degrees or more (say), then those pixels are considered as 2-D vertices.

5. For each successive orientation of the camera and the pinhole position
Repeat steps 1–4;
Find the correspondence in the vertices of each 2 successive frames by the
method presented in the next section;
Determine the 3-D points for each 2-D vertex of the object by taking the
corresponding measurement of the 2-D vertex position in the next frame
using EKF;
End For;

6. Mark the planes on the localized object in the original image by segmenting
them further into different regions using average intensity of 8-neighobourhood
points of a pixel as a measure. If more than one vertex is available in each
segmented region then consider them belonging to the same plane.

7. Use EKF to determine the equation of planes using the corresponding 3-D
points computed in step 5 corresponding to the 2-D points lying on a plane
as found in step 6.

8. Determine the geometric relations such as perpendicularity or parallelism of
the planes to identify the object of interest from its geometric definition.

9. End.

It is to be mentioned here that to keep the algorithm simple we omit the steps
of robot movement and camera orientation control part from the algorithm. The
camera orientation should be altered in successive frame and robot also needs
to be moved a little to get the view of the most of the corresponding points in
the next image. The successive positions of the robot and the camera orienta-
tions in our experiments were fixed from prior knowledge. A complete automation
where the robot can itself decide its next position and camera orientation is under
development.

5.3. EXPERIMENTAL DETAILS AND RESULTS

In step 2 of the algorithm we segmented the image to isolate the block from the
background image. For segmentation the traditional thresholding technique was
used to convert the gray image to a binary image. The pixels having gray value
less than the selected threshold are assigned to have a gray value 0, while those
exceeding or equal to the threshold are assigned a gray value 255. Since the block
was white, a threshold of around 150 can isolate it from the rest of the gray image.
A threshold less than 150 keeps part of the block dark, while a threshold more than
this keeps regions close to the block white. Figure 9 shows one image taken by the
robot and its corresponding segmented view.

After segmentation is over the white largest region corresponds to the block.
Had there been a number of large white regions, then we need to use a window
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(a)

(b)
Figure 9. (a) A snapshot of the box taken by the camera fixed with the robot. (b) The
segmented figure (a) with a threshold = 150.

based localization scheme, where the entire image is partitioned into equal sized
blocks and the blocks containing 80% or more white region is considered as the
desired sub-block. Then the connected sub-blocks are identified and the location of
the desired object is detected through shape analysis by the chain-code technique.
Fortunately, the noisy white region in Figure 9(b) being small enough compared to
the large sized white block may be ignored.

The localized block is then marked in the original image in Figure 9(a). The
Laplacian operator then is used to determine the edges of the block (Figure 10).
For the detection of the vertices, the pixels on the edges are traced and at each
pixel the change in geometric direction gradient is determined. The pixels having
a change in slope greater than 30 degrees are regarded as the 2-D vertices. It may
be noted that one vertex has been lost in image 9(b), but this can be avoided if
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Figure 10. The edges of the block in image 9(a) after localization.

region growing technique was employed for segmentation. But region growing is
highly time-consuming, so we used histogram-based thresholding technique for
segmentation.

Once the 2-D vertices of an object in an image are identified they are labeled
as back-left-top, back-right-top, front-right-top, front-left-top, front-left-bottom,
front-right-bottom, etc. depending on their positions in the block. This is actually
needed to handle the correspondence problem. The correspondence problem is
concerned with identifying the same points in 2 or more images. After labeling
the vertices in the image in that manner identifying the same vertex in 2 images
becomes easier. In case more than one vertex in an image has the same label, say
back-left-top, or there exist possibilities that two or more vertex can have the same
labels then additional junction labeling scheme needs to be adopted. The junction-
labeling scheme by Waltz [19] that labels the junctions into 18 possible labels,
for instance is a good choice. If more than one type of Waltz’s 18 junction labels
is available in a scene, then a combination of our labeling scheme and Waltz’s
junction labeling scheme may be adopted. We in our experiment, however, have
used the position-wise labels to the vertices. For determining the type of junction
labels, the following type rules have been employed.

RULE 1: If (out of the neighboring 8 pixels only the south, east and south-east
pixels have identical gray value, and the rest are different)
Then (the vertex is back − left − top corner).

Once the correspondence in the 2-D vertices of the block in multiple images is
detected, they can be supplied one by one to the EKF for the determination of their
corresponding 3-D point. As the robot moves around the obstacle (Figure 8) it takes
6 snaps of the block W between the line segments aa′ to bb′, bb′ to cc′, cc′ to dd′
and dd′ to aa′. Coordinates of the 2-D vertices of the block W, measured from these
six images between 2 line segments (say aa′ to bb′), have been used recursively
as the input to a Kalman filter for the reconstruction of their 3-D coordinates.
Figure 11 illustrates the input and output parameters of a Kalman filter employed
for reconstruction of 3-D coordinates of a vertex ‘A’ from six 2-D image coordinate
‘A1’ through ‘A6’ of same vertex ‘A’.
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Figure 11. Extraction of the 3-D points from six 2-D image points.

The first two iterations of the estimation process of reconstructing the 3-D point
from the multiple 2-D image points are as follows. The inputs to the first iter-
ation are 2-D point (u1, v1) = (−2.7, 1.3) and set of camera parameters x0 =
36.5, y0 = 98.5, z0 = 28.5, A = 2.793, B = −1.97, C = 0. The output
is the 3-D point (x, y, z) = (22.11, 6.84,−19.57) and the covariance matrix =
[232.6 1192.9 627.5; 1192.9 7699.3 4021.5; 627.5 4021.5 2161.7]. Similarly the
input to the second iteration are the 2-D point (u2, v2) = (−2.25, 1.3) and a new
set of camera parameters x0 = 27.5, y0 = 97.5, z0 = 28.5, A = 3.14, B = −1.97,
C = 0. The output of is the 3-D point (x, y, z) = (32.04, 63.64, 10.44) and the
covariance matrix is [22.79 − 8.92 − 4.42; −8.92 805.88 413.28; −4.43 413.28
240.84]. The procedure continues until all the scanned points taken by the camera
are exhausted or the covariance matrix is very close to a null matrix.
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Figure 12. The 3-D reconstruction points with incoming stream of 2-D points A1–A6.

The response of the Kalman filter in the reconstruction of the 3-D points is
presented in Figure 12 and one element of the covariance matrix against iterations
is presented in Figure 13. It is clear from these figures that a higher accuracy in the
3-D reconstruction can be achieved with increased number of 2-D image points.

After reconstruction of the 3-D vertices of a planer object the location of the
planes in the object need to be identified. This has been carried out by another
stage of segmentation with multiple thresholding. The frequency histogram for the
wooden block has multiple peaks. The image needs to be converted to a binary
image after setting a threshold marginally exceeding the gray value corresponding
to the peak of the histogram. Most of the planes can be located by repeating this
process for each peak of the histogram. Next important aspect is to identify the ver-
tices that lie on each plane. Since the vertices are already identified and labeled, this
step is rudimentary. The 3-D planes now can be reconstructed with the knowledge
of the 3-D points on the plane. An example below illustrates this.

Suppose, one 3-D vertex is given by (x, y, z) = (0, 0, 3) along with a initial
measure of a0 (= null vector) and S0 (= a large matrix). The EKF at its first iter-
ation then estimates the 3-D plane parameters (a, b, p) = (0, 0, −2.997). At the
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Figure 13. One element of the error covariance matrix Si .

second iteration the input of the filter is the 3-D point (x, y, z) = (3.2, 2.2, 3.1)
along with a1 and S1 estimated in the first iteration and the output of the filter is
the 3-D plane parameter (a, b, p) = (−0.022, −0.015, −2.997). The procedure
is thus repeated with number of points on the planes until the covariance matrix
is very close to a null matrix or all 3-D points available on the plane have been
exhausted.

The final part of the problem is to determine the 3-D planer object from the
relationship of its 3-D planes. To illustrate, let us consider a physical object, say
the box, shown in Figure 14. Let us define a box as an object consisting of at least
three planes abcd, cdef and adeg having an angle α, β, and δ between them, where
the angles can take the values 90◦ − θ � α, β, δ � 90◦ + θ , and (0 � θ � 15◦).
The following types of rule have been employed to identify planer objects like box,
chairs or tables.

IF (Angle-between (plane 1, plane 2, 90◦ + θ) AND

Greater-than (θ, 0◦) AND Less-than (θ, 15◦) AND

Angle-between (plane 2, plane 3, 90◦ + θ) AND

Greater-than (θ, 0◦) AND Less-than (θ, 15◦) AND

Angle-between (plane 3, plane 1, 900 + θ) AND

Greater-than (θ, 0◦) AND Less-than (θ, 15◦))
THEN (object = box).

In our implementation we realized this part by logic programming [1] using PRO-
LOG since it can handle logical relations very efficiently.

To take care of the partial matching of the object features with those of model
objects we are now developing a fuzzy-logic-based matching system [5]. A fuzzy
membership function is defined to describe the object feature in membership do-
main and a partial matching between the object features and the geometric primi-
tives of an ideal object is carried out in this domain. Depending on the degree of
matching, the object is classified to one of the model objects.
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Figure 14. Spatial relations among components of a box.

6. Conclusions

The paper presented an experimental scheme for 3-D reconstruction of planer ob-
jects from their multiple images using extended Kalman filtering. The proposed
technique has been applied in recognizing simple objects like box in a robot’s
workspace. The well-known 3-D map-building problem in mobile robotics thus
can be realized by the proposed approach. For the recognition of a 3-D object the
robot needs to move around the object and take multiple snaps at different camera
orientations. The time required for grabbing an image, transferring it to the tabletop
client and image processing is around 200 milliseconds. The major time required
is to move the robot around the block. The time required to recognize a wooden
block of (10′′ × 8′′ × 6′′) dimension taking into account the motion of the robot has
been found to be 18 seconds approximately on a Pentium III type client with 64
MB RAM and the Pioneer 2 type server.
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