
Assurance

Amit Konar

Math and Computer Sc., UMSL

Assurance and Trust?

 Vendors frequently use the term “secure” in
product names and product literature to refer to
products and systems that have some security
included in their design and implementation.

 Providing security requirements and functionality
may not be sufficient to engender trust in the
system.

 Intuitively, trust is a belief or desire that a
computer entity will do what it should to
protect resources and be safe from attack.

Definition: Trustworthy

 An entity is trustworthy if there is sufficient

credible evidence leading one to believe that the

system will meet a set of given requirements.

Trust is a measure of trustworthiness, relying on

the evidence provided.

 To determine trustworthiness, we focus on

methodologies and metrics that allow us to

measure the degree of confidence that we can

place in the entity under consideration.

Definition: Security Assurance

 Security assurance, or simply assurance, is confidence
that an entity meets its security requirements, based on
specific evidence provided by the application of
assurance techniques.

 A related term, information assurance, refers to the
ability to access information and preserve the quality and
security of that information.

 It differs from security assurance, because the focus is
on the threats to information and the mechanisms used
to protect information, and not on the correctness,
consistency or completeness of the requirements and
implementation of those mechanisms.

Definition: Trusted System

 A trusted system is a system that has
been shown to meet well-defined
requirements under an evaluation by a

credible body of experts who are certified
to assign trust ratings to evaluated
products and systems.

Need for Assurance

 Accidental/ unintentional failures of computer systems, as well as
intentional compromises of security mechanisms, can lead to
security failures. Neumann describes 9 types of problem sources in
computer systems.

 1. Requirement definitions, omissions, and mistakes
 2. System design flaws
 3. Hardware implementation flaws, such as wiring or chip faults
 4. Software implementation errors, program bugs and compiler bugs
 5. System use and operation errors and inadvertent mistakes
 6. Willful system misuse
 7. Hardwired communication or other equipment malfunction
 8. Environmental problems
 9. Evolution, maintenance, faulty upgrades, and decommissions

Examples illustrating the need
for Assurance

 Example 1: The space shuttle Challenger exploded
on January 28, 1986, killing everyone on board.

 An essential failure was a decision to take

shortcuts to meet an accelerated launch schedule.
Among other steps, several sensors were removed
from the booster rockets. The sensors might have
enabled analysts to detect that the cold weather was
affecting the booster rockets adversely, and to delay
the launch. Better Assurance techniques might
have detected the possible effects of removing
the sensors

Example 2: The Radiation
Overdose Death Problem

 Three patients died from a radiation overdose

attributed to a Therac 25 computer-based

electron accelerator radiation therapy system.

 The flaws in the system resulted from two flaws

in the design of the system’s software and the
removal of a hardware safety interlock.

Assurance techniques would have detected
the removal of the interlock.

Example 3: The Three Mile Island
Nuclear Failure

 Although the most significant root cause of the
Three Mile Island Nuclear failure was a
hardware problem (nonstandard instruments
were used to measure core temperature),
design and software problems contributed
significantly.

 When the temperature rose very high, the
system printed a string of question marks rather
than the measured temperature. In addition, the
intended, rather than the actual valve settings
were displayed. Assurance techniques would
have detected these software flaws.

Example 4: The Bell V22 Osprey
helicopter failure

 The Bell V22 Osprey is a high technology helicopter.
After a fifth Osprey had crashed, an analysis traced the
cause to a failure to correct for malfunctioning
components.

 The Osprey implemented a majority-voting algorithm,
and the cross-wiring of two roll-state sensors allowed
two faulty components to outvote the third, the correctly
functioning component. Although assurance techniques
might not have prevented the incorrect voting, they
would have emphasized the results that could have
occurred if faulty components overrode correctly
functioning components.

Example 5: Trigonometric function

failures in Intel’s 486 Chip

 When bugs were found in the trigonometric
functions of the Intel’s 486 chip, Intel’s
public reputation was damaged, and
replacing the chips cost Intel time and
money.

 As a result, Intel began using high
assurance methods to verify the
correctness of requirements in their chip
design.

