
Access Control: The Matrix
Model

by

Amit Konar

Dept. of Math and CS, UMSL

What is “Protection state” of a
system?

 The state of a system is the collection of
the current values of all memory locations,
all secondary storage, and all registers

and all other components of the system.

 The subset of this collection that deals

with protection is the protection state of
the system.

Security Policy

Let

 P be the possible states of a system,

 Q (subset of P) be the set of states in

which the system is authorized to reside,

 The security policy attempts to keep the

system states as elements of Q. It
prevents the system from entering a
state in P - Q.

Secure and Precise Security
Mechanism

 Suppose a security mechanism restricts
the states of the system in R( P).

 If R  Q, the security mechanism is
secure.

 If R = Q, the security mechanism is
precise.

 The access control matrix model is the
most precise model used to describe
protection states.

What is access control matrix
model?

 The access control matrix model
describes the rights of the users over
files in a matrix.

 Let

 S be the set of subjects (processes/users)

 O be the set of objects, and

 a[s, o], the elements of matrix A R, the
set of rights, i.e., subject s has the right
a[s,o] over object o.

Example: access control matrix

 File 1 File2 Proc.1 Proc. 2

Proc.1 r/w/own r r/w/exe/own w

Proc.2 append r/own r r/w/exe/own

 Proc.1 can communicate with proc.2 by
writing on to it, and Proc. 2 can read from
Proc. 1.

What does reading from a
process mean?

Depending on the instantiation of the model,

It could mean that:

 the reader accepts message from the
process being read, or

 the reader simply looks at the state of the
process being read (as debugger does, for
example).

Example : The UNIX System

The UNIX system defines the rights: r/w/exe.

 1. When a process accesses a directory, “read”
means to be able to create, rename or delete
files or subdirectories in that directory, and exe
means to be able to access files/sub-directories
in that directory.

2. When a process accesses another process,
“read” means to be able to receive signals,
“write” means to be able to send signals and exe
means to be able to exe. The process as a sub-
process.

Example: Access Control Matrix
for a LAN system

The rights on a LAN:

 Own: the ability to add servers

 ftp: the ability to access the system using

FTP

 nfs: the ability to access the system

using the Networks File System

 mail: the ability to send and receive mail
using the Simple Mail Transfer

Example: Rights on a LAN

Host name telegraph nob toadflax

telegraph own ftp ftp

nob ftp/nfs/mail/own ftp/nfs/mail

toadflax ftp/mail ftp/nfs/mail/own

 The subject telegraph is a PC with an ftp
client but no servers. So, neither of the
other systems can access it, but it can ftp
to them.

Modeling Programming Language

Accesses Using Access Control Ma

Objects: variables; counter

Subjects: Procedu./Modules;Inc_ctr, Dec_ctr, Ma

Rights: {+, -, call};

 Counter Inc_ctr Dec_ctr manager

Inc_ctr +

Dec_ctr -

Manager call call call

State Transition by operation on
System States

Let

 the initial state be X0 = (S0, O0, A0).

Then

 Xi ├ Xi+1,

 opi+1

 which means that system state Xi has a
transition to Xi+1 due to use of operator
opi+1.

State transition by commands

Let

 Ci+1 be a command, which is used to
change the states of the system from Xi to

Xi+1.

 pi+1, 1; …..pi+1,m are parameters of Ci+1.

Then

 Xi ├ Xi+1.

 ci+1 (pi+1,1; ……;pi+1,m)

Primitive Commands

1. create subject s; no rights added

2. create object o; no rights added

3. enter r into a[s, o]; adds right r

4. delete r from a[s, o]; deletes right r

5. destroy subject s; deletes row/columns

for s

6. destroy object o; destroys rows and
columns for o.

Generating Complex commands
using primitive commands

 Example: In UNIX system, process p created a

file f with owner read and write permission. The

command capturing resulting changes in access

control matrix would be:

 Command create.file (p, f)

 create object f;

 create own into a[p, f];

 enter r into a[p, f];

 enter w into a[p, f]; end

Command indicating that Process p

wishes to create a new process q

Command spawn.process (p, q)

 create subject q;

 enter own into a [p, q];

 enter r into a[p, q];

 enter w into a[p, q];

 enter r into a[q, p];

 enter w into a[q, p];

 end

Example: Mono-operational
command

 Mono-operational means having a single
primitive command in the complex
command.

 Suppose we want to add p as the owner of
file f. The old owner remained.

 command make.owner(p, f)

 enter own into a[p, f];

 end

Conditional commands

 If p is the owner of a file f, he/she can
allow someone q to read the file. The
following command does this.

 Command grant.read.file.1(p, f, q)

 if own in a[p, f]

 then enter r into a[q, f];

 end

Inclusion of Boolean and in a
command

 Suppose that a system has the distin-
guished right c. If a subject p has the
rights c and r over an object, it may give r-

right to q.

 command grant.read.file.2(p, f, q)

 if r in a[p, f] and c in a[p, f]

 then enter r into a[q,f];

 end

Boolean Or, Negation not
allowed

1. If r not in a[p, f]: wrong use

2. If own in a[p, f] or a in a[p, f]

 then enter r into a[q, f]; wrong use

