
 

 

 

\  

 

Abstract—This paper  provides an alternative approach to the 
co-operative multi-robot path planning problem using parallel 
differential evolution algor ithms. Both centralized and 
distr ibuted realizations for  multi-robot path planning have been 
studied, and the per formances of the methods have been 
compared with respect to a few pre-defined yardsticks. The 
distr ibuted approach to this problem out-per forms its 
centralized version for  multi-robot planning. Relative 
per formance of the distr ibuted version of the differential 
evolution algor ithm has been studied with varying numbers of 
robots and obstacles. The distr ibuted version of the algor ithm is 
also compared with a PSO-based realization, and the results are 
competitive. 

I. INTRODUCTION 

HE late 1990s have seen a significant progress in mobile 

robotics [1], [2], [3]. Path planning is regarded as a              

fundamental problem in mobile robotics. Given a world 

map for a robot, the path planning problem [31] attempts to 

determine a trajectory of motion for the robot from a 

predefined starting point to a given goal point without 

colliding with any obstacle in the map. The basic path 

planning problem has several extensions and classifications. 

One common classification of the problem includes local
and global planning [12], [13], [14], [15]. In local path 

planning a robot navigates through the obstacle map in steps 

and determines its next position toward the goal, satisfying 

one or more predefined constraints on path-, time- or energy-

optimality [4], [5], [6], [7], [10], [11]. In global planning, on 

the other hand, the robot plans the entire path prior to its 

movement towards the goal. Such type of global planning is 

sometimes referred to as offline planning in the literature 

[32].  

Significant progress on single robot motion planning [34],  

[35], [5] has been attained in mobile robotics over the last 

three decades. Classical approaches such as quad-tree [34], 

graph-based, voronoi-diagram, heuristic algorithms such as  
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real time A* [23], neural [35] and evolutionary [5] 

algorithms are some of the well-known techniques for path 

planning. In a multi-robot motion planning problem, each 

robot has a predefined starting and goal position in a given 

world map and the robots have to plan their paths, either 

globally or locally, without hitting any of the teammates or 

obstacles. The obstacles may be stationary or dynamic. 

However, we in this paper consider stationary obstacles in 

the given world map for the robots.  

The path-planning problem in the given context attempts 

to minimize the total distance traveled by the robots in the 

given workspace, subject to the constraint that the robots do 

not hit each other or the static obstacles. It may be noted that 

like the single robot path planning problem, the multi-robot 

path planning is an NP- complete [16] problem, as no 

polynomial time algorithm to solve the problem is known at 

this time [9]. 

Researchers are keen to consider geometry/topology-

based path planning problems for multi-robot systems. In a 

geometry-based path planning problem [17], [15], the 

obstacle location and the geometry of the environment are 

considered, whereas in a topology-sensitive path planning 

system [18], [19], a specialized data structure, such as a 

graph, describing the paths among different regions of the 

robots’ world map is considered. In a recent work [20], 

researchers employed a hierarchical decomposition of sub-

graph, describing road maps for the robots, for topology- 

sensitive path planning for multiple robots. Such works are 

more effective for obstacle-free environment. 

 The multi-robot path-planning problem can broadly be 

realized by two distinct approaches, centralized and 

distributed. In the centralized approach [18], [21], [22], the 

objective functions and the constraints for path/motion 

planning of all the robots are considered together. The 

computation for local planners by the centralized approach is 

too costly, and thus is not amenable to real-time realization. 

On the contrary, the distributed approach divides the 

complexity of centralized path planning into problems of 

small complexity to be shared by the robots. Consequently, 

in distributed planning, each robot attempts to construct its 

path almost independently, avoiding collision with static 

obstacles or teammates engaged in path planning. 

 Most of the distributed planning algorithms attempt to 

handle the problem into distinct phases. In the 1
st
 phase, the 

paths for the individual robots are constructed, ignoring the 

presence of other robots. In the 2
nd

 phase, the paths of the 

robots are retuned in order to avoid collision with other 

robots. One fundamental problem of this approach lies in 
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proving completeness of the algorithm. In other words while 

retuning the paths in the 2
nd

 phase, we can’t always 

guarantee having feasible collision-free trajectories for the 

robots that really lead them to the goals.  

Distributed planning is currently gaining importance in 

multi-robot path planning applications [23], [24], [25], [26]. 

In [23], path planning by the distributed approach is 

accomplished in two steps. First, the individual paths of the 

robots are constructed independently. In the next step, 

possible conflicts between two robots are determined when 

their distance is within a pre-defined setting. Conflicts 

between robots are resolved by introducing a priority 

scheme, and the order of re-planning the paths of the robots 

are determined by the priority scheme. Distributed methods 

that employ re-planning strategies have limited applications 

in a small world map with fewer obstacles. The complexity 

of the algorithm increases significantly with increase in 

world map size and number of obstacles.  

In [28], the authors decompose the problem of multi-robot 

motion planning into smaller sub-problems including path 

planning and velocity planning. Initially the individual paths 

of the robots are generated to satisfy the criteria of minimum 

path planning for the robots. In the second phase, velocity 

planning of the robots is needed to avoid collisions among 

the teammates.  

A mixture of the centralized and decentralized schemes 

has been adopted in [27] where robots in close vicinity are 

considered together for planning their trajectory in a 

centralized manner. These robots, for which a centralized 

scheme of path planning is considered, may be called a 

group. For two or more such groups, a distributed approach 

is adopted for planning/re-planning. 

In this paper, we propose a new approach to handle the 

multi-robot motion planning as a stochastic optimization 

problem.  Any stochastic optimization algorithm, such as 

Genetic Algorithm (GA), Particle Swarm Optimization 

(PSO), Differential Evolution (DE), and the like could have 

been used to solve this problem. However, we selected DE 

for its wide popularity and reportedly better performance 

with respect to PSO [33] and the classical GA. 

It may, indeed, be mentioned here that there exist two 

alternative formulations of the given problem. First, the 

problem can be formulated as a centralized one, where an 

iterative algorithm is invoked to uniquely determine the next 

positions of all the robots. The algorithm is iterated until all 

the robots safely reach their destinations (goals). 

Alternatively, we can employ a distributed approach to solve 

the same problem. Here we consider n iterative algorithms 

for n robots, and the i-th algorithm determines the next 

position for the i-th robot, satisfying the necessary 

constraints. 

For realization with DE in the centralized approach, we 

need to construct a fitness function for the DE to determine 

the next positions of all the robots that lie on optimal 

trajectories leading towards their respective goals. The 

fitness function of the DE has two main components: 1) the 

objective function describing the selection of the next 

position on an optimal trajectory, and 2) the constraint 

representing collision avoidance with peers and static 

obstacles. 

As the distributed approach employs n algorithms, one 

each for one robot, each DE algorithm includes a fitness 

function to minimize the traversed path, avoiding collision. 

When realized on a single processor system, the distributed 

approach runs the DEs in a given order, and once all the 

algorithms have been executed, the next positions of the 

robots are planned. Apparently, the merits of the n-DE 

distributed approach lie in faster convergence of the DE’s 

and a reduced total motion planning time. 

Cooperation is an important issue in multi-robot motion 

planning. Sometimes, cooperation is achieved through 

communication among the robots [1]. In order to improve 

the quality of the time-optimal solution, researchers prefer to 

reduce communication overhead, while maintaining 

cooperation among the robots [12]. In this study, behavioral 

cooperation of the robots is realized through selection of 

alternative local trajectories for collision avoidance among 

teammates. 

The remainder of this paper is organized as follows. 

Section II provides a formulation of the cost function for the 

centralized and the distributed systems. Section III provides 

a brief description of the DE algorithm. Section IV presents 

the algorithm for the distributed system, realized with DE. 

Experiments and computer simulation for performance 

analysis are presented in section V. Conclusions are drawn in 

section VI.  

II. FORMULATION OF THE PROBLEM 

The formulation considers the evaluation of the next 

positions of the robots from their current positions in a given 

world map with a set of static obstacles. A set of principles 

based on the following assumptions is constructed to 

formalize the path-planning problem.  

Assumptions

1) The current position of each robot is known with 

respect to a given reference coordinate system. 

2) The robots have a fixed set of actions for motions. A 

robot can select one action at a given time.  

3)  The path-planning problem for each robot is executed 

in steps until all robots reach their respective (predefined) 

goal positions. 

Principles

 The following principles have been used in the present 

context, satisfying the assumptions. 

1) A robot attempts to align itself towards the goal.  

2) In case the alignment results in a possible collision with 

the robots /static obstacles in the environment, the robot has 

to turn left or right by a prescribed angle to alter its current 

direction of movement, thereby marginally avoiding 

collisions with teammates and obstacles. 

3)  If a robot can align itself with a goal without collision, 

it can start constructing a path up to the selected node. 

4) If turning left or right requires the same angle of 

rotation of the robot around the z-axis, the tie is arbitrarily 
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broken. 

Let ( ix , iy ) be the current position of the i-th robot at 

time t, ( ix′ , iy′ ) the next position of the same robot at time 

( t +1), iv  the current velocity of the i-th robot, and 

( igx , igy ) the goal position of the i-th robot. It is apparent 

from Fig. 1 that  

              ix′ = ix + tv ii Δθcos                  

              tvyy iiii Δ+=′ θsin                                     (1)             

When Δ t =1, the above pair of equations reduces to      

             

             iivixix θcos+=′                 

             iiviyiy θsin+=′                                             (2) 

 

                   

A. Centralized Planning

Consider the robot iR  initially located at ( ix , iy ).  We need 

to select a point ( ix′ , iy′ ), i.e. the next position of the robot, 

such that line joining ( ix , iy ), ( ix′ , iy′ ) and the one joining 

( ix′ , iy′ ), ( igx , igy ) do not touch the obstacle (Fig. 2).  This 

is realized with the DE algorithm. 

Let f be an objective function that determines the length 

of the trajectory. For n  robots,  

∑
=

−′+−′+′−+′−=
n

i
igiigiiiii yyxxyyxxf

1

2222 }))()(())()(({  (3)                                           

Substituting for ix′  and iy′  from expressions (2) we 

obtain, 

    ∑
=

−++−++=
n

i
igiiiigiiii yvyxvxvf

1

22 }})sin()cos{({ θθ  

Since the distance between two robots at any point of time 

should not be less than a predefined threshold (to avoid 

collision), we can use this as a primary constraint to this 

problem. Let di' j' be the distance between i-th and j-th robots’ 

next positions. Then the constraint that the robot will not hit 

its kin is given by di' j' – 2r > 0, where r denotes the radius of 

the robots. 

The optimization problem includes an objective function, 

concerning minimization of the Euclidean distance between 

the current positions of the robots with their respective goal 

positions, constrained by obstacles/teammates on the path. 

The constraints have been modeled by two types of penalty, 

the first due to a collision between any two mobile robots, 

and the second due to the collision of a mobile robot with a 

static obstacle. Thus the constrained optimization problem is 

given by 

             ∑
=

−++−++=
n

i
igiiiigiiii yvyxvxvf

1

22 }))sin()cos(({ θθ + 

               obsist

n

i

n

jij
jidp dfrdf −

′ ′≠′=′
′′ +−∑ ∑ /)))2(,0(min(

,1

2  (4)                   

where dpf  (> 0) and stf (> 0) are scale factors and di- obs 

represents the distance of the nearest obstacle from the i-th 

robot. In our experiments, we used stf =5000 and dpf =100.  

B. Distributed Planning

In centralized planning, the current positions and the goal 

positions of the robots and the distance between a robot and 

its neighbors are submitted to a plan-manager that executes a 

DE algorithm to determine the next position of each robot, 

avoiding collisions between any two robots.  To avoid the 

heavy computations involved, we construct an alternative 

arrangement for faster computation. The total task is divided 

into n sub-tasks, where each subtask is realized by a DE 

algorithm.  

Let fi denote the constrained objective function for the i-th 

robot.  Following the formulation of the centralized system, 

we obtain 

 

        2)(2)(2)(2)( igyiyigxixiyiyixixif −′+−′+′−+′−=  

           +
obsidstfrjiddpf

−
+− /

2
))}2

''
(,0{min(                 (5) 

                     
i∀′  

For a distributed realization of the multi-robot motion-

planning problem, we need to employ n DEs, where the i-th 

DE attempts to minimize if in each iteration. The advantage 

of this scheme is that n DEs are run in parallel, with simple 

objective functions and less constraint, thereby speeding up 

the execution time of the algorithm. The use of the 

distributed realization in real time makes sense. 

 

x i 

yi 
(xi , yi) 
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Fig. 1.  Current and next position of the i-th robot.  

(xig, yig) 

(xi′, yi′) 

(xi, yi) 

y 
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Obstacle 

 

 
Fig. 2.  Selection of ( ix′ , iy′ )from ( ix , iy ) to avoid 

collision with obstacle. 
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III. THE DIFFERENTIAL EVOLUTION ALGORITHM 

Evolutionary algorithms (EA) have proved successful in 

intelligent search, optimization and machine learning 

applications. The genetic algorithm (GA) is the most popular 

member of this class of algorithms. In 1995, Storn and Price 

proposed an alternative form of EA that includes selection, 

differential mutation and recombination to generate trial 

vectors for the next iteration [29], [30], [8]. This algorithm is 

now popularly called Differential Evolution [8]. DE searches 

for a global optimum in a D-dimensional hyperspace. It 

begins with a randomly initialized population of D-

dimensional real-valued parameter vectors. Each vector 

forms a candidate solution to the multi-dimensional 

optimization problem. 

The initial population (at time t = 0) is chosen randomly 

and should be representative of as much of the search space 

as possible. Subsequent generations in DE can be 

represented by discrete time steps: t = 1, 2, ...  etc. Since the 

parameter vectors are likely to be changed over different 

generations, the following notation has been adopted here for 

representing the e-th vector of the population at the current 

generation (at time t): 

          ]),......(),([)( ,2,1, Deeee xtxtxtX =
v

 

For each parameter of the problem, there may be a certain 

range within which the value of the parameter must lie. At 

the beginning of a DE run, problem parameters or 

independent variables are initialized somewhere in their 

feasible numerical range. So, if the m-th parameter of the 

given problem has its lower and upper bound as L
mx and 

U
mx respectively, then the m-th component of the e-th 

population member may be initialized as 

)).(1,0()0(,
L
m

U
m

L
mme xxrandxx −+=                    (6) 

where rand(0,1) is a uniformly distributed random number 

lying between 0 and 1. 

For each individual vector )(tXe
belonging to the current 

population, DE randomly samples three other individuals 

)(
1

trX , )(
2

trX , and )(
3

trX from the same generation (for 

distinct e, r1, r2 and r3), calculates the difference of the 

components of )(
2

trX  and )(
3

trX , scales it by a scalar F ( ⊂  

[0,1]) and creates a mutant  vector by adding the result to the  

base vector, )(
1

trX . So, we can write the mutant vector as 

))(
3

)(
2

.()(
1

)( trXtrXFtrXtev −+= . 

To increase the potential diversity of the population, DE 

crosses each vector with a mutant vector, building a trial 

vector: 

)(
,

)()( , tmevtuteU me ==      if rand (0, 1) < CR       (7) 

           = )(
,

tmex        otherwise 

where CR (є[0,1]) is the crossover constant. 

To keep the population size constant over subsequent 

generations, the next step of the algorithm calls for 

‘selection’ to determine which one between the target vector 

and trial vector will survive in the next generation (i.e. at 

time t+1). DE uses the Darwinian principle of “survival of 

the fittest” in its selection process which may be expressed as  

  )()1( tUteX e=+ if ))(())(( tXftUf ee ≤
r

               (8)                 

             )(teX= if ))(()(( teUfteXf <  

where f(.) is the function to be minimized.  If the trial vector 

yields a better value of the fitness function, it replaces its 

target in the next generation; otherwise the target is retained 

in the population. Hence the population either gets better 

(with respect to the fitness values) or remains the same but 

never deteriorates. 

IV. SOLVING THE CONSTRAINT OPTIMIZATION PROBLEM 

USING DE 

In this section we propose a solution to the distributed 

version of the multi-robot motion planning problem 

(described in section II) using parallel DEs. The proposed 

scheme presumes current positions of n robots and their 

speeds, and determines the next position of each robot by 

optimizing the given constrained objective function. An 

algorithm outlining the scheme is presented below: 

Pseudo Code

Input: Initial position ( iyix , ), goal position ( igx , igy ) and 

velocity iv for n  robots where ni ≤≤1  and a threshold 

valueε . 

Output: Trajectory of motion iP  for each robot iR  from ( ii yx , ) 

to ( igx , igy ). 

Begin 
Set for all robot i  

iicurr xx ←_ ; iicurr yy ←_ ; 

For  robot 1=i to n 

Repeat 
Call DE ( icurricurr yx __ , , pos-vector ) 

// pos-vector denotes current position of all robots // 

     Move-to ( icurricurr yx __ , );  

Until ε≤− iGicurr _  

// icurr _  = ( icurricurr yx __ , ), Gi = ( igx , igy ) // 

End for ; 
End.  
 

Procedure DE ( icurricurr yx
−−

, , pos-vector)  

Begin 
Initialize population.  
For  Iter = 1 to Maxiter do 

    Begin 
    Create trial vector using equation (7). 

    Evaluate fitness. 

    If the trial vector is better than its target vector 

    Then replace the target by trial in the next generation; 

    End If;  
End for ; 
Update: 

                   riicurricurr vxx θcos__ +← ;  
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               riicurricurr vyy θsin__ +← ;   

Return; 
End. 

V. EXPERIMENT AND COMPUTER SIMULATION 

The multi-robot path planning was implemented in C on a 

Pentium processor. The experiment was performed with 14 

similar soft-bots of circular cross section. The radius of a 

robot was 6 pixels. For each robot the starting and the goal 

points are predefined prior to initiating the experiment. The 

experiments were performed with 0, 2, 5, 8, and 11 

differently shaped obstacles. While performing the 

experiments, old obstacles were retained, and  new obstacles 

were added. The experiments were conducted with equal 

velocities for all the robots in a given run of the program; 

however, the velocities were adjusted over different runs of 

the same program. 

One of our experimental world-maps is shown in Fig. 3. 

Fig. 3(a) demonstrates an initial configuration of the world-

map with 11 dark obstacles, and the starting and the goal 

positions of 14 circular soft-bots. The steps of movement of 

the robots are shown in Fig. 3(b). 

To analyze the performance of the proposed multi-robot 

motion-planning problem, we measured the following two 

parameters. 

A. Average total path deviation (ATPD)

Let ikP be a path from the starting point iS  to the goal 

point iG  generated by the program for robot iR in the k-th 

run. If 1iP , 2iP ,….., ikP are the paths generated over k  runs 

then the average path traversed (APT) by robot iR  is given 

by kP
k

j
ij /

1

∑
=

and the average path deviation for this robot is 

evaluated by measuring the difference between APT and the 

ideal shortest path between iS to iG  (with minimum 

threshold spacing with each obstacle). The threshold in our 

experiment was considered to be one pixel. 

 If the ideal path for robot iR obtained geometrically is 

idealiP − , then the average path deviation is given by  

                       kPP
k

j
ijideali /

1

∑
=

− − . 

Therefore for n  robots in the workspace the average total 

path deviation (ATPD) is ∑ ∑
= =

− −
n

i

k

j
ijideali kPP

1 1

)/( . 

B. Average Uncovered Target Distance (AUTD)

Given a goal position iG  and the current position iC of a 

robot on a 2-dimensional workspace, where iG and iC are 2-

dimensional vectors, the uncovered distance for robot i  

is ii CG − , where . denotes Euclidean norm. 

 

For n robots, uncovered target distance (UTD) is the sum 

of ii CG −  i.e., 

                              UTD = ∑
=

−
n

i
ii CG

1

. 

Now, for k runs of the program, we evaluate the average 

of UTDs and call it the average uncovered target distance 

(AUTD). For all experiments conducted in this study, we 

considered k = 10. 

The experiment was first conducted using the centralized 

version of the algorithm, where we used (4) as the fitness 

function of a single DE to determine the next position of 

each robot from the current position. The algorithm is 

iterated until all the robots reach their respective goal 

positions. Let the number of robots be n and the number of 

obstacles m. The experiment was performed by setting the 

same velocity for all the robots in a given program run, and 

AUTD readings versus the number of steps were noted for 

each run. The experiment was then repeated by changing 

velocities of the robots in each run. Fig. 4 shows that with 

decrease in velocity, AUTD takes a longer time to attain the 

zero value. Similar observations also follow for the number 

of robots, n, as a variable in the AUTD versus number of 

steps plot (Fig. 5). 

 

 

 

 

 

 

 

 
Fig. 3(a).  Initial configuration of the world-map with 11 

obstacles. 

 
Fig. 3(b).  Final configuration of the world-map. 
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Experiments were also undertaken for a distributed 

realization of the algorithm, and the performance of the 

proposed multi-robot motion-planning problem is obtained 

from the experimental graphs (Fig. 6 - Fig. 8).  

We note from Fig. 6(a) that ATPD is a non-decreasing 

function of n for a constant m. An intuitive interpretation of 

this phenomenon is that with increase in n, robots face more 

constraints to plan local trajectories, thereby increasing 

ATPD. It is also noted from Fig. 6(a) that for a constant n, an 

increase in m causes more spatial restrictions in trajectory 

planning, thereby increasing ATPD. The same observations 

follow from Figure 6(b). 

Average uncovered target distance (AUTD) is plotted 

against the number of steps in Fig. 7 for a given velocity of 

all the robots. Fig. 7 shows that the AUTD gradually 

diminishes with iterations. Further, it is noted that the larger 

the velocity settings of the robots in program run, the faster 

is the fall off in the AUTD profile. 

 

 

 The fall-off in AUTD over program steps for a given n is 

demonstrated in Figs. 8(a) and 8(b) where we see that the 

larger the number of robots, the slower the convergence. 

Slower convergence, in turn, causes a delayed fall-off in 

AUTD. Figs. 8(a) and 8(b) provide similar information on 

AUTD versus number of steps for varying n. The differences 

 
Fig. 4.  AUTD vs. Number of steps with velocity as variable for 

number of obstacle=5 (constant) in centralized approach.  

 
Fig. 5.  AUTD vs. Number of steps with number of robots as 

variables for number of obstacle=5 (constant)  

 
Fig. 6(a).  ATPD vs. Number of Robots with number of 

obstacles as variables for velocity =12 unit (constant).

 
Fig. 6(b).  ATPD vs. number of obstacles with no. of robots 

as variables for velocity=12 unit (constant).  

 
Fig. 7.  AUTD vs. Number of steps with velocity as variable for  

number  of obstacles=11 (constant).  

 
Fig. 8(b).  AUTD vs. Number of steps with number of robots as 

variable for  number  of obstacle=11(constant).

 
Fig. 8(a).  AUTD vs. Number of steps with no. of robots as   

variables for number of obstacles=5 (constant).  
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in these figures lie in the number of obstacles m. The number 

of obstacles is 5 and 11 in Figs. 8(a) and (b), respectively. It 

is clear from these figures that a higher value of m results in 

a higher convergence time. Consequently, AUTD is higher 

for more obstacles at a given iteration.  

 

To compare the centralized and distributed approaches we 

run the programs until DE algorithms converge. Fig. 9 

compares the two approaches, for the world-map with 5 

obstacles. From Fig. 9(a) we see that in the centralized 

approach, average total path deviation is more than that in 

the distributed approach. Fig. 9(b) shows that the number of 

total iterations for the centralized approach is more than the 

distributed approach’s. We calculate the total iterations for 

centralized and distributed realization by ∑
=

s

i
iI

1

 and  ∑ ∑
= =

s

i

n

k
ikI

1 1

 

respectively, where s is the total number of steps for all the 

robots to reach their destinations, Ii = number of iterations of 

the DE program in the i-th step,  

Iik = number of iterations of the DE program for the k-th 

robot in i-th step. 

The relative performance of DE and PSO can be studied 

through error estimation as indicated in Fig. 10(a). In this 

figure, we plotted the average of total path traversed (ATPT) 

obtained from DE- and PSO-based experiments, 

corresponding to each value of n. We also evaluated the 

error in ATPT by taking the difference of ATPT values 

obtained from DE and PSO as shown in Fig. (10b). 

Let Ei be the error for the i-th sample data. Since the 

errors for different sample data are all positive, indicating a 

superiority of DE over PSO, a measure of the relative 

goodness of DE over PSO can be defined as the root mean 

square error  Er.m.s= 36.9037.  This shows DE as having an 

advantage over PSO for the multi-robot motion planning 

problem. Of course, the root mean square error (36.9037) at 

the sample points being much smaller than the root mean 

square value (3060.20) of the averaged ATPT profiles for 

PSO and DE-based simulations, DE seems to have 

marginally outperformed PSO. 

VI. CONCLUSION 

This paper addressed the issue of multi-robot motion 

planning by DE, and solved the problem by both centralized 

and distributed approaches. Performance evaluation metrics 

ATPT and AUTD have been used to study the performance 

of the proposed distributed algorithm and to study the 

relative performance of the two approaches. The results of 

performance evaluation confirm the advantage of the latter 

approach over the former. The proposed distributed 

algorithm differs from classical two-phase motion planning 

algorithms, and the effort on offline planning in the 1
st
 phase 

of classical algorithms can be avoided by our approach. 

Since n parallel DEs have been employed to handle the 

distributed motion-planning problem of n robots, the run 

time required for the proposed distributed realization is  

small in comparison with other classical algorithms. The 

distributed DE-based algorithm was also found to be 

comparable to or better than PSO-based path planning. 

 
Fig. 9(a).  ATPD vs. Number of Robots with number of 

obstacles=5 (constant), for both centralized and 

distributed approach.

 
Fig. 9(b).  Total number of Iterations of all the DE programs, 

required to reach the robots to their goal position vs. number 

of Robots for number of obstacles= 5 (constant). 

 
Fig. 10(a).  Average total path traversed vs. number of 

robots. 

 
Fig. 10(b).  Average (dotted line) and the difference (solid 

line) of ATPT vs. number of robots obtained from the Fig. 

10(a).
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